

Alleviate the Apprehension
of Coding in Ruby

Chris Lasell
Apple Peeler

Pixar Animation Studios

Install session materials
Includes some example code & libraries

ruby-jss and ruby gem dependencies into

 /Library/Ruby/Gems & /usr/local/bin

two methods and a class into /Library/Ruby/Site

an example script and data file into /Users/Shared

http://bit.ly/2emM1VW

Goals
By the end we will:

Learn some Ruby (& OOP) terminology

Read (and write) basic Ruby code

Use ruby-jss to access the REST API

Find resources for further learning

Your Background
You should be familiar with one or more:

Python, Perl

Advanced Bash

PHP, Javascript

Swift, ObjC, Go, Lua, COBOL…

Your Understanding
You should already know about:

Data Types (Strings, Numbers, Arrays, …)

Variables, Constants & Functions

Conditionals (if, unless)

Loops (for, for each, repeat)

The Ruby Philosophy
Programming in Ruby should be

Adaptable & Contextual

Expressive

Fun!

Unsurprising (once you know it)

Computers are the slaves!

irb - Interactive Ruby
irb

require 'jnuc-intro-ruby'
=> true

%

It's useful for testing your code
as you write or for
doing one-off tasks

irb is a Ruby 'shell'
where you type and execute

Ruby code in real-time

'require' tells ruby to read and execute
some pre-written code from disk

=> nil

puts 'hello world'>

>

welcome

=> nil

>
Welcome to JNUC 2016

hello world

Fire up a terminal and type 'irb'

Connect to the JSS REST API
JSS is a module that we

load by requiring ruby-jss

Enter the password for JSS user jssadmin@10.0.1.2:
=> "10.0.1.2"

JSS::API.connect user: 'jssadmin', pw: :prompt, server: '10.0.1.2'>

require 'ruby-jss'
=> true
>

jnuc2016

15.class
=> Fixnum

=> "hello world"
15

=> 15

'hello world'.class
=> String

'hello world'>

>

>

>

=> JSS::APIConnection
JSS::API.class>

Every Thing is an Object
Objects = nouns

'things' stored in memory

There are many kinds
of objects, like…

'kind of object' = 'Class'

Strings &

Integers

15.capitalize
=> NoMethodError: undefined method `capitalize' for 15:Fixnum

=> 11
'hello world'.capitalize

=> "Hello World"

'hello world'.length>

>

>

Every Action is a Method
Methods = verbs, "functions"

They make objects do things like…
retrieve attributes &

perform actions

Methods always 'return' a value

Different classes have different methods

=> #<JSS::APIConnection:0x007fde...
JSS::Client::JAMF_SUPPORT_FOLDER

=> #<Pathname:/Library/Application Support/JAMF>

JNUC_CITY = 'Minneapolis'
=> "Minneapolis"

JSS::API>

>

>

my_string = 'this is my string'
=> "this is my string"
>

Variables & Constants

Constants start with
a capital letter

Variables start with
lower-case, possibly @

Objects can be stored in Constants & Variables

Modules and Classes
often contain Constants

Classes & Instances

A class defines a kind of object using
constants, variables, and methods

An individual object is an 'instance'
of its class

my_string.class
=> String

=> "this is my string"

Dog.class
=> Class

my_string>

>

>

You can define your own classes

Class Methods
Class methods are used when

there is no context for an 'instance'
but the method is related to

the class as a whole

In documentation, they are sometimes
marked by a leading :: such as Dog::top_ten_names

=> ["Bella", "Max", "Molly", "Buddy"...
> Dog.top_ten_names

=> ["5DBB27D6EB01", "5DBB27D6EB02"...
> JSS::Computer.all_serial_numbers

my_string = "this is my string"
=> "this is my string"
>

my_dog = Dog.new(name: 'Colby')
=> #<Dog:0x007f9ba9c23930 @name="Colby"...
>

a_comp = JSS::Computer.new(id: 72)
=> #<JSS::Computer:0x007fde250143b0 ...
>

Creating Instances

Some classes have shortcuts,
e.g. Strings use quotes

The usual way is with the 'new' class method

This retrieves an instance of
JSS::Computer from the API

Instance Methods

In documentation, they are often
marked by a leading #

Instance methods work on
instances of a class

'String#length' or just '#bark'
if we know the context

=> nil
> my_dog.bark
=> 17
> my_string.length

=> "Sales"
> a_comp.department

=> true
> a_comp.managed?

Quoting Strings
Single vs double quotes,

generally work
as in bash

As do HereDocs

=> "this is my string"

A_CONSTANT = "This string shouldn't change"
=> "This string shouldn't change"

multiline = <<ENDQUOTE
This is a
multiline string
ENDQUOTE

my_string = 'this is my string'>

>

>

=> "This is a\nmultiline string"

=> "the value of'my_string' is: 'this is my string'"
"the value of 3 plus 4 is: #{3 + 4}"

=> "the value of 3 plus 4 is: 7"
"the length of 'my_string' is: '#{my_string.length}'"

"the value of 'my_string' is: '#{my_string}'">

>

>
=> "the length of 'my_string' is: 17"

"#{my_string}"
=> "this is my string"
my_string

>

>
=> "this is my string"

String Interpolation

Use #{}

Any expression works

As with bash, double-quoted strings can embed values

A common rookie error:
interpolation with nothing

=> "ruby"
str2 = 'ruby'

=> "ruby"
str1.object_id == str2.object_id

str1 = 'ruby'>

>

>
=> false

sym1 = :ruby>
=> :ruby
sym2 = :ruby>

=> :ruby
sym1.object_id == sym2.object_id>

=> true

Symbols

Two identical Strings are still different
objects in memory

Two identical Symbols are
the same object

Symbols: 'lightweight' Strings

Usually used as labels

=> ["hello world", 12, 3.1416, :foobar]

my_array[2] = Math::PI
=> 3.141592653589793

my_array = ["hello world", 12, 3.1416, :foobar]>

>

my_array[0]
=> "hello world"
>

Arrays
Known as "lists" in some languages

Ordered collections of objects indexed by
zero-based numeric position

my_array>
=> ["hello world", 12, 3.141592653589793, :foobar]

=> ["All Managed Clients"]

JSS::MobileDevice.all
=> [{:id=>1, :name=>"Ismael's iPhone", :device_name=>"Ismael's iPhone"

a_comp.computer_groups>

>

Arrays from the JSS
Lots of things in the JSS module return Arrays

Many of which are full of Hashes

JSS::User.all_names
=> ["ijames", "bsingleton", "cschmidt"...
>

my_hash[:name]
=> "my toy box"

my_hash = { :height => 18,
 :width => 24,
 :depth => 15,
 :name => "my toy box",
 :unit => :inches }

>

>

=> {:height => 18, :width => 24, :depth => 15, :name =>
 "my toy box", :unit => :inches}

my_hash["color"] = :blue
=> :blue
>

Hashes
a.k.a. dictionaries, records,
objects, associative arrays

Collections of key-value pairs

Indexed by their keys

Keys are often Symbols

Sometimes Strings,
but can be any object

=> {:height => 18, :width => 24...

my_hash = { :height => 18,
 :width => 24,
 :depth => 15,
 :name => "my toy box",
 :unit => :inches }

>

=> {:height => 18, :width => 24...

my_hash = { height: 18,
 width: 24,
 depth: 15,
 name: "my toy box",
 unit: :inches }

>

Modern Hashes

Normally, Hash items are defined
with 'key => value'

But if keys are symbols,
the new way is simpler

JSS::MobileDevice.all.each do |dev|
 puts "#{dev[:name]} is an #{dev[:model_display]}"
end

=> [{:id=>1, :name=>"Ismael's iPhone"...

>

Ismael's iPhone is an iPhone 4S
Bernard's iPad is an iPad 3rd Generation (Wi-Fi)
Christina's iPhone is an iPhone 5S (GSM)
[...]

Looping over Arrays & Hashes
Ruby has 'for' loops,

but no one uses them
Instead, use methods called 'iterators'

5.upto 7 do |val|
 foo_string << val.to_s
end

=> 5

=> "foo"
5.times { foo_string << 'bar' }

=> 5
foo_string

=> "foobarbarbarbarbar"

foo_string = 'foo'>

>

>

>

Iterators & Code Blocks

To pass values to the block, use |...|

Code blocks are inside
{...} or do...end

Other kinds of methods can
use code blocks too

Iterators 'iterate' over
collections

=> "foobarbarbarbarbar567"
foo_string>

The #each Iterator
#each loops thru, handing

each item to
the block

for processing

JSS::MobileDevice.all.each do |dev|
 puts "#{dev[:name]} is an #{dev[:model_display]}"
end

=> [{:id=>1, :name=>"Ismael's iPhone"...

>

Ismael's iPhone is an iPhone 4S
Bernard's iPad is an iPad 3rd Generation (Wi-Fi)
Christina's iPhone is an iPhone 5S (GSM)
[...] When finished,

it returns the
original Array or Hash

[1, 2, 3].map { |n| n * 2 }
=> [2, 4, 6]

JSS::Category.all.map { |cat| cat[:name] }
=> ["Graphics", "Music", "Operating System", "Text Editors"]

>

>

The Array#map Iterator

#map returns a new Array, where
each item is the result of executing

the code block on the matching
item in the original Array

arr = [1, 2, 3]
=> [1, 2, 3]
>

arr.reject { |n| n == 3 }
=> [1, 2]

JSS::Computer.all.select{|comp| comp[:managed]}.map{|c| c[:name]}
=> ["Ismael's MacBook Air", "Bernard's MacBook Pro"...

>

>

arr.select { |n| n.odd? }
=> [1, 3]
>

#select & #reject
#select returns a new Array

with only the items for which
the code block was true

#reject does the opposite

Iterators can be chained like
any other method

my_dog.bark

=> []
empty_array[0]

=> nil
empty_array[14].nil?

=> true

empty_array = []>

>

>

>
=> nil

Nil
Nil is a non-object,

it's the lack of a value

Nil is the 'default' value for
Arrays and Hashes

Nil is often returned by methods
that don’t have a meaningful

return value

=> :small

my_dog.speak if jss_size == :small
=> nil

>

>

jss_size = if JSS::Computer.all.count > 4000
 :large
 else
 :small
 end

Conditionals

Note: everything is true except false and nil

Conditionals can be 'modifiers'

"if" and "unless" evaluate
the truth of an expression,

and are expressions themselves

say_hello to: 'Chris', from: 'Alex'
=> "Alex says hello to Chris"

=> 9
'hello world'.index('l')

=> 11
'hello world'.delete 'lo'

=> "he wrd"

'hello world'.length>

>

>
=> 2

> 'hello world'.index 'l', 4

>

Method Parameters

Positional parameters

Named parameters

Optional parameters & parens

Docs are your friend

No parameters

Required parameters

Putting It All Together
In a text editor, open up the ruby script "group-sync"

from /Users/Shared/intro-ruby

This script will synchronize a JSS static computer group
with the contents of a file full of computer names

It does this, in an object-oriented way,
in 40ish lines of (heavily commented) code

Lets have a look at through it.

Ruby Beyond the Code
Before we’re done, a brief look at:

Built-in Libraries

Gems

Resources

Built-in Libraries
Core Library

Array, String, Symbol, Hash, Fixnum, Float, File, Dir…

No need to 'require'

Standard Library

Pathname, Date, FileUtils, JSON, YAML, WebRick…

Must 'require'

Gems
Ruby packages are called gems

Almost all 3rd party libraries are distributed as gems

Install and manage them with the 'gem' command

Thousands are out there

Most are at www.rubygems.org

http://www.rubygems.org

Docs & Resources
There’s tons out on the web, here’s some:

http://ruby-doc.org/

 Core and Standard Library

http://www.rubydoc.info/

 Auto-generated for all RubyGems & GitHub & StdLib

#ruby in Macadmins Slack

@glenfarclas17

Th nk you!

